Experimental Evolution of Vancomycin Resistance in **Clostridioides difficile: Pathways** and Mechanistic Insights

Twitter: @buddlejess

Jessica Buddle

Robert Fagan

jbuddle2@sheffield.ac.uk

Lizah van der Aart

Vancomycin

Recommended front-line drug (UK)

Re

fr

Glycosyltransferase

Giveosyicialisieiase

RESEARCH ARTICLE

Prevalence and antimicrobial resistance pattern of *Clostridium difficile* among hospitalized diarrheal patients: A systematic review and meta-analysis

Tebelay Dilnessa^{1,2}*, Alem Getaneh¹, Workagegnehu Hailu³, Feleke Moges¹, Baye Gelaw¹

1 Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, 2 Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia, 3 Department of Internal Medicine, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia

D-Ala

Cytoplasm

ne

New chain

end

D-Ala to D-Ser Vancomycin Resistance

Previous experimental evolution showed vancomycin resistance in *C. difficile* is possible *in vitro*

Unknowns:

Alternative pathways to resistance, routes to high-level resistance, fitness costs

- i. Evolution *rate, extent*
- ii. Phenotypic growth, fitness
- iii. Genotypic *mutations, routes, population dynamics*
- iv. Mechanistic novel mechanistic insights

Evolution of R20291 (027) Δ*PaLoc*

in parallel

Vancomycin resistance evolves rapidly

Replicate line	End point MIC (µg/mL)
Ancestral	1
Bc1	32
Bc2	16
Bc3	16
Bc4	16
Bc5	32

Resistance is accompanied by growth and sporulation defects

Genetic Characterisation of resistance: Sequencing

Isolates sequenced (30x)

Populations sequenced (100-250x)

Genetic Characterisation of resistance: Sequencing

What do we want to gain from sequencing?

Isolates

Mutations involved in an individual bacterium to promote resistance.

Populations

- Mutations involved in population resistance
- Frequency of these mutations in the population
- Frequency change over time (evolutionary dynamics)

Resistance evolves in parallel in replicate lines

Resistance evolves in parallel in replicate lines

Population sequencing reveals evolutionary dynamics

Population sequencing reveals evolutionary dynamics

80° 80' 80' 80' 80'

Passage 10 Passage 20

Passage 30

81-100%

61-80%

• 41-60%

21-40%1-20%

Population sequencing reveals evolutionary dynamics

	¢	6	1 4 ⁶	^b &d	×~5	, ,
Passage 10						
Passage 20						
Passage 30						

81-100%
61-80%

41-60%21-40%

• 1-20%

Validating the role of *dacS* in resistance

Validating the role of *dacS* in resistance

D-ala-D-ala carboxypeptidase cleaves terminal D-ala

Validating the role of *dacS* in resistance

Vancomycin can no longer bind

dacS SNP results in 4x increase in vancomycin resistance

Recapitulated Bc1 *dacS* SNP in WT background to validate effects on resistance:

dacS SNP results in increased expression of dacJRS

dacS mediated overexpression of dacJ depletes D-Ala

dacSc.714G>T

R20291*DPaLoc* Unlabelled

Overexpression of *dacJ* results in vancomycin binding site depletion

10 µm

Bc1Δ*dacJ* partially restores vancomycin binding

Bc1∆*dacJ*

8-fold reduction in MIC

Partial restoration of vancomycin binding

10 µm

dacJRS Summary

Strain	End point MIC (µg/mL)
Ancestral WT	1
Bc1	16
Bc1 <i>dacS</i> SNP	4
Bc1∆ <i>dacJ</i>	2

Bc1∆*dacJ* showed only *partial* restoration of vancomycin binding

No other vancomycin unique mutations in illumina data

dacJRS is not the sole mechanism of Bc1 resistance

Nanopore identified two additional InDels

Gene Name	Function	Mutation
CDR20291_0979		44 bp deletion
vanS	two-component sensor histidine kinase	30 bp insertion
dacS	two-component sensor histidine kinase	SNP

dacJRS is not the sole mechanism of Bc1 resistance

Isolate	Vancomycin (µg/mL)							
	0	0.5	1	2	4	8	16	MIC
R20291∆Paloc	00	00						1
Bc1	0		00	••	0	0		16
R20291∆PaLoc dacSc.714G>T	00	••	••	•				4
R20291∆ <i>PaLoc</i> 1,197,357_1,197,4 00del	00	00						1
R20291∆ <i>PaLoc</i> <i>vanS</i> c.367_396dup	00	00	••	18 M.				2
R20291∆PaLoc dacSc.714G>T vanSc.367_396dup	00	00	00	00	0	• •		16
R20291∆ <i>PaLoc</i> <i>vanS</i> c.367_396dup 1,197,357_1,197,4 00del	00	\odot	0	- 59 - 132 -				2
R20291∆ <i>PaLoc dacS</i> c.714G>T 1,197,357_1,197,4 00del	00	0	••		$[\mu_{1}, \dots, \mu_{n}]$			4
R20291∆ <i>PaLoc</i> dacSc.714G>T vanSc.367_396dup 1,197,357_1,197,4 00del	00	00	0 •	••	• •	00		16

dacS + *vanS* mutations fully recapitulate Bc1 resistance

Isolate	Vancomycin (µg/mL)							
	0	0.5	1	2	4	8	16	MIC
R20291∆ <i>Paloc</i>	0	0					1. 1	1
Bc1	0 0	0	0	•	0	9		16
R20291∆PaLoc dacSc.714G>T	00	\odot	0					4
R20291∆ <i>PaLoc</i> 1,197,357_1,197,4 00del	00	0	4. 6.					1
R20291∆ <i>PaLoc</i> <i>vanS</i> c.367_396dup	00	0	0	47) 14				2
R20291∆PaLoc dacSc.714G>T vanSc.367_396dup	00	0	0	0	0	0		16
R20291∆ <i>PaLoc vanS</i> c.367_396dup 1,197,357_1,197,4 00del	00	0	•					2
R20291∆ <i>PaLoc dacS</i> c.714G>T 1,197,357_1,197,4 00del	00	0	•					4
R20291∆ <i>PaLoc dacS</i> c.714G>T <i>vanS</i> c.367_396dup 1,197,357_1,197,4 00del	00	00	0	••	0	6		16

dacJRS is not the sole mechanism of Bc1 resistance

dacS + *vanS* work synergistically

Implications of *dacS* + *vanS* synergy

Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available *Clostridioides difficile* genome sequences

Baban Kolte and Ulrich Nübel[∞]

vanS-p.R314L	8	<u>15</u>	12	4×10^{-4}	4 (RT027), 178 (RT018), 2 (RT002)
vanS-p.R314H	8	this study	16	6×10^{-4}	4 (RT027), 22 (RT106), 86
vanS-p.S313F	8	<u>15</u>	13	5×10^{-4}	4 (RT027), 3 (RT001), 58 (RT012)
vanS-p.G319D	16/>8	¹⁵ ∕this study	45	2×10^{-3}	89, 3 (RT001), 4 (RT027)
vanS-p.T349I	8/2-8	¹⁵ ∕this study	3477	0.13	2 (RT002), 86 (RT005), 34 (RT014)

Only a single *dacS* SNP required to elevate *vanS* resistance dramatically

vanS insertions never reported – may not be captured

vanS mutation results in van constitutive expression

Like previously identified *vanS* SNPs, *vanS*c.367_396dup results in constitutive expression of *vanGXYT*

Summary

MurNAc GlcNAc

Vancomycin

Read the paper here:

Multiple evolutionary pathways lead to $bioR\chi iv$ vancomycin resistance in Clostridioides difficile

Jessica E. Buddle, D Rosanna C.T.Wright, D Claire E.Turner,
 Roy R. Chaudhuri, D Michael A. Brockhurst, D Robert P. Fagan
 doi: https://doi.org/10.1101/2023.09.15.557922

#OpenToWork

CV website

PhD hand in: July Scholarship end date: November

Please come chat to me! ③

Paper

Acknowledgements

Robert P. Fagan^{1*}

Michael A. Brockhurst^{2*} Lucy M. Thompson¹ Anne S. Williams³ Claire E. Turner¹ Roy R. Chaudhuri¹ Rosanna C. T. Wright² William M. Durham³

Affiliations:

¹ Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
 ² Division of Evolution and Genomic Sciences, University of Manchester, Manchester M13 9PT, UK
 ³ Department of Physics and Astronomy, University of Sheffield, Sheffield S10 2TN, UK

Fagan Lab

MRC DiMeN Doctoral Training Partnership

Medical Research Council

Read the paper here:

Multiple evolutionary pathways lead to $bioR\chi iv$ vancomycin resistance in Clostridioides difficile

Jessica E. Buddle, D Rosanna C.T.Wright, D Claire E.Turner,
 Roy R. Chaudhuri, D Michael A. Brockhurst, D Robert P. Fagan
 doi: https://doi.org/10.1101/2023.09.15.557922

#OpenToWork

CV website

PhD hand in: July Scholarship end date: November

Please come chat to me! ③

Paper