
Identification of breast cancer biomarkers linked with interstitial 
fluid flow and hypoxia using a spheroid-on-chip perfusion system

Introduction
Solid tumours are complex and heterogeneous systems, which exist in a dynamic biophysical
tumour microenvironment (TME), including low oxygen levels (tumour hypoxia) and the
presence of interstitial fluid flow (IFF). Both have been shown to be involved in driving tumour
progression, but IFF has largely been overlooked in in vitro recapitulations of the TME.
Microfluidic approaches are well suited to bridge this gap and incorporate fluid perfusion to
model IFF. We have previously developed a spheroid-on-chip model to address this gap
(Collins et al 2021). In this study (Pyne et al 2024) we used our model to perform an unbiased
analysis of the impact of IFF on cancer biology in experimental (tissue culture) and hypoxic
conditions, by conducting transcriptomic analyses to elucidate possible mechanisms by
which IFF could be influencing TME progression and identify biomarkers associated with IFF.
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3. Identification of potential IFF-associated clinically relevant biomarkers – ACTL8 as a proof of principle 
analysis in breast cancer

1. Whole transcriptome analysis reveals impact of IFF-like 
perfusion on cancer spheroid biology
A A

Conclusions
• Our study, using a spheroid-on-chip microfluidic system, is the first to systematically explore

transcriptional changes linked with tumour IFF-like conditions, particularly in low oxygen
conditions relevant to those observed in the hypoxic tumour microenvironment.

• We have also identified and analysed ACTL8 as a candidate biomarker linked with IFF-like
conditions and showed high expression of ACTL8 to be associated with poor prognosis in
breast cancer.

• Identifying IFF-linked biomarkers would provide an alternative to traditional invasive and
imaging-based methods to measure IFF.

Figure 1. To determine the whole transcriptome impact of IFF-like flow, MCF7 spheroids were exposed to in static or flow conditions for
24 h in the presence of Matrigel using our spheroid-on-chip device (A) and RNA samples extracted. Bulk RNA-sequencing was performed
(n=3), with Heatmap (B) and volcano plot (C) represent significantly differentially expressed genes (DEGs), with p.adjust<0.05 and fold
change > log2(1.5). (D-E) Pathway enrichment analysis using GO (gene ontology) categories was performed for upregulated (C) and
downregulated (D) genes, with key factors validated using qPCR (F-G). Transcription factor enrichment was performed for the
upregulated (H) and downregulated (I) DEGs. Immunoblotting (J-K) was used to analyse the protein expression of HIF-1a, E2F1 and p53.
Blots are representative of n = 3 experiments. Unpaired student’s t-test was performed to test for statistical significance between
samples. ns = nonsignificant; * p<0.05; ** p<0.01

B

Figure 2. To determine the whole transcriptome impact of IFF-like flow in hypoxic conditions, MCF7 spheroids were exposed to in static or
flow conditions for 24 h in the presence of Matrigel using our spheroid-on-chip device in a hypoxia chamber at 1% O2 (A). (B) Oxygen
consumption modelling of spheroids in static and flow conditions was performed, with the spheroid perfused with air saturated medium
(no matrigel) at three different oxygen tensions (20%, 3%, and 1% O2 levels) in static conditions or at a flow rate of 3 μL min−1. RNA
samples extracted, and bulk RNA-sequencing was performed (n=3), with Heatmap (C) and volcano plot (D) represent significantly
differentially expressed genes (DEGs), with p.adjust<0.05 and fold change > log2(1.5). (E-F) Pathway enrichment analysis using GO (gene
ontology) categories was performed for upregulated (E) and downregulated (F) genes, with key factors validated using qPCR (G-H).
Unpaired student’s t-test was performed to test for statistical significance between samples. ns = nonsignificant; * p<0.05; ** p<0.01.

Figure 3. (A) Panel of genes uniquely linked with either static or flow conditions were selected from the normoxic (20% O2) RNA-sequencing dataset, with Heatmap (A) representing log2 fold change for these genes. MCF7 spheroids were formed as before and exposed to static or flow
conditions for 24 hours in the presence of Matrigel in normoxic conditions (20% O2), and gene expression for the gene panel validated through qPCR as described before, with plots (B) representing n=6 (24 h) independent experiments. Expression of ACTL8 was also evaluated in static
or flow conditions for 24 h in the presence of Matrigel in hypoxic conditions (1% O2). (B) Prognostic value for ACTL8 expression in breast invasive carcinoma patient samples was determined using the TCGA pan cancer Atlas RNA-seq dataset (n=1084) for Disease-free Survival (n=1061)
and Overall Survival (n=1082) and Metabric for Relapse-free Survival (n=1978) plots compare high and low ACTL8 expression, determined by median ACTL8 expression. This dataset was also analysed for proportion of breast cancer subtypes (C). (D) AUC (Area Under The Curve) ROC
(Receiver Operating Characteristics) curve analysis was performed to evaluate the predictive value of ACTL8 gene expression vs responsiveness to any kind of chemotherapeutic treatment to determine predictive biomarker potential in breast cancer patients , n= 426 (non-responders
= 197; responders = 229). For Survival plot analysis p value, a Logrank test was used; for ROC p value determination, a Mann-Whitney test was used. Significance is considered if p<0.05. (E-F) Analyses of relationship between ACTL8 mRNA expression and genomic instability markers.
ACTL8 expression in patients (n = 994) from the TCGA PanCancer Atlas Breast Invasive Carcinoma study were analysed for links with genomic instability markers. E - Correlation analysis of ACTL8mRNA levels vs Genomic instability marker ‘Fraction Altered Genome’. F - Frequency of
genomic alterations linked with increased genomic instability (MYC amplification, TP53mutations, and PTEN deletions) comparing patient samples with low of high ACTL8mRNA expression.
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